129 research outputs found

    The Tropospheric Lifetimes of Halocarbons and Their Reactions with OH Radicals: an Assessment Based on the Concentration of CO-14

    Get PDF
    Chemical reaction with hydroxyl radicals formed in the troposphere from ozone photolysis in the presence of methane, carbon monoxide and nitrogen oxides provides an important removal mechanism for halocarbons containing C-H and C = C double bonds. The isotropic distribution in atmospheric carbon monoxide was used to quantify the tropospheric hydroxyl radical distribution. Here, this methodology is reevaluated in the light of recent chemical kinetic data evaluations and new understandings gained in the life cycles of methane and carbon monoxide. None of these changes has forced a significant revision in the CO-14 approach. However, it is somewhat more clearly apparent how important basic chemical kinetic data are to the accurate establishment of the tropospheric hydroxyl radical distribution

    Observation of molecules produced from a Bose-Einstein condensate

    Full text link
    Molecules are created from a Bose-Einstein condensate of atomic 87Rb using a Feshbach resonance. A Stern-Gerlach field is applied, in order to spatially separate the molecules from the remaining atoms. For detection, the molecules are converted back into atoms, again using the Feshbach resonance. The measured position of the molecules yields their magnetic moment. This quantity strongly depends on the magnetic field, thus revealing an avoided crossing of two bound states at a field value slightly below the Feshbach resonance. This avoided crossing is exploited to trap the molecules in one dimension.Comment: 4 pages, 4 figures, minor revison

    In-situ comparison of the NOy instruments flown in MOZAIC and SPURT

    Get PDF
    Two aircraft instruments for the measurement of total odd nitrogen (NOy) were compared side by side aboard a Learjet A35 in April 2003 during a campaign of the AFO2000 project SPURT (Spurengastransport in der Tropopausenregion). The instruments albeit employing the same measurement principle (gold converter and chemiluminescence) had different inlet configurations. The ECO-Physics instrument operated by ETH-ZĂźrich in SPURT had the gold converter mounted outside the aircraft, whereas the instrument operated by FZ-JĂźlich in the European project MOZAIC III (Measurements of ozone, water vapour, carbon monoxide and nitrogen oxides aboard Airbus A340 in-service aircraft) employed a Rosemount probe with 80 cm of FEP-tubing connecting the inlet to the gold converter. The NOy concentrations during the flight ranged between 0.3 and 3 ppb. The two data sets were compared in a blind fashion and each team followed its normal operating procedures. On average, the measurements agreed within 7%, i.e. within the combined uncertainty of the two instruments. This puts an upper limit on potential losses of HNO3 in the Rosemount inlet of the MOZAIC instrument. Larger transient deviations were observed during periods after calibrations and when the aircraft entered the stratosphere. The time lag of the MOZAIC instrument observed in these instances is in accordance with the time constant of the MOZAIC inlet line determined in the laboratory for HNO3

    Strongly correlated photons on a chip

    Full text link
    Optical non-linearities at the single-photon level are key ingredients for future photonic quantum technologies. Prime candidates for the realization of strong photon-photon interactions necessary for implementing quantum information processing tasks as well as for studying strongly correlated photons in an integrated photonic device setting are quantum dots embedded in photonic crystal nanocavities. Here, we report strong quantum correlations between photons on picosecond timescales. We observe (a) photon antibunching upon resonant excitation of the lowest-energy polariton state, proving that the first cavity photon blocks the subsequent injection events, and (b) photon bunching when the laser field is in two-photon resonance with the polariton eigenstates of the second Jaynes-Cummings manifold, demonstrating that two photons at this color are more likely to be injected into the cavity jointly, than they would otherwise. Together,these results demonstrate unprecedented strong single-photon non-linearities, paving the way for realizing a single-photon transistor or a quantum optical Josephson interferometer

    PEDANT covers all complete RefSeq genomes

    Get PDF
    The PEDANT genome database provides exhaustive annotation of nearly 3000 publicly available eukaryotic, eubacterial, archaeal and viral genomes with more than 4.5 million proteins by a broad set of bioinformatics algorithms. In particular, all completely sequenced genomes from the NCBI's Reference Sequence collection (RefSeq) are covered. The PEDANT processing pipeline has been sped up by an order of magnitude through the utilization of precalculated similarity information stored in the similarity matrix of proteins (SIMAP) database, making it possible to process newly sequenced genomes immediately as they become available. PEDANT is freely accessible to academic users at http://pedant.gsf.de. For programmatic access Web Services are available at http://pedant.gsf.de/webservices.jsp

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Ultrafast all-optical switching by single photons

    Full text link
    An outstanding goal in quantum optics is the realization of fast optical non-linearities at the single-photon level. Such non-linearities would allow for the realization of optical devices with new functionalities such as a single-photon switch/transistor or a controlled-phase gate, which could form the basis of future quantum optical technologies. While non-linear optics effects at the single-emitter level have been demonstrated in different systems, including atoms coupled to Fabry-Perot or toroidal micro-cavities, super-conducting qubits in strip-line resonators or quantum dots (QDs) in nano-cavities, none of these experiments so far has demonstrated single-photon switching on ultrafast timescales. Here, we demonstrate that in a strongly coupled QD-cavity system the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes-Cummings manifold with a switching time of 20 ps. As an additional device application, we use this non-linearity to implement a single-photon pulse-correlator. Our QD-cavity system could form the building-block of future high-bandwidth photonic networks operating in the quantum regime
    • …
    corecore